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We study the ‘‘asymmetric’’ Hubbard model, where hoppings of electrons
depend on their spin. For strong interactions and sufficiently asymmetric hop-
pings, it is proved that the ground state displays phase separation away from
half-filling. This extends a recent result obtained with Freericks and Lieb for the
Falicov–Kimball model. It is based on estimates for the sum of lowest eigen-
values of the discrete Laplacian in arbitrary domains.
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1. INTRODUCTION

Electronic properties of condensed matter are difficult to apprehend
because of the many-body interactions between quantum particles. It is
necessary to consider simplified models that capture the physics of various
systems. Of great relevance is the Hubbard model (13) where spin- 12 electrons
move on a lattice and interact via a local Coulomb repulsion. Although a
considerable simplification to the original problem, the Hubbard model is
still difficult to study and Hubbard himself considered an approximation
where particles of one spin are infinitely massive and behave classically.

The latter model was reinvented later by Falicov and Kimball in a
different context, namely in the study of the metal-semiconductor transi-
tion in rare-earth materials. (5) Two species of electrons corresponding to
different electronic bands are moving on a lattice, and relevant interactions
are between particles of different species. Electrons carry spins but these
turn out to be mathematically irrelevant and they can be left aside. There



exist many results for the Falicov–Kimball model. Let us mention proofs of
long-range order (1, 10, 12, 15, 17, 19, 25) and of phase separation; (16) all these results
are valid at half-filling, that is, the total density is equal to 1. Interfaces
were studied in ref. 4. The ground state is segregated away from half-
filling; (6, 7) see also ref. 9. There exist reviews by Gruber and Macris, (11)

Jȩdrzejewski and Lemański, (14) and Freericks and Zlatić. (8) Less is known
rigorously about the Hubbard model, see the survey by Lieb. (22)

We consider here a Hamiltonian that interpolates between Hubbard
and Falicov–Kimball and that describes two species of spinless fermions
moving on Zd; particles have different effective masses, and there is a local
interaction involving particles of different species. The Hamiltonian in
second quantization is

HL=− C
x, y ¥ L
|x−y|=1

c†x1cy1−t C
x, y ¥ L
|x−y|=1

c†x2cy2+U C
x ¥ L

nx1nx2. (1.1)

Here L is a finite cube in Zd and c†xj and cxj are creation and annihilation
operators of a fermion of species j at site x. The first two terms represent
the kinetic energy of light and heavy electrons respectively (we suppose that
0 [ t [ 1). nxj=c†xjcxj is a particle number operator. The positive parameter
U measures the strength of the on-site repulsion between particles of
species 1 and 2.

Setting t=1 yields the Hubbard model, and t=0 yields the Falicov–
Kimball model. It is interesting to note that the behavior of both models
is similar when both particles have density 1

2: for d \ 2, the ground state
of the Hubbard model is a spin singlet, (21) and the one of the Falicov–
Kimball displays long-range order of the chessboard type. (17) This holds for
all strictly positive values of the coupling constant U. It is natural to
conjecture that long-range order occurs for all t.

Convergent perturbative expansions for large U are a major source of
results for the Falicov–Kimball model, at least at half-filling. See refs. 3
and 18 for general methods, and ref. 2 for a discussion specifically to the
Falicov–Kimball model. These methods are robust and extend to any
perturbation of the model. This holds in particular in the case of the
asymmetric Hubbard model with small t.

Our goal is to identify a phase with with segregation and to contrast it
with chessboard order and with high-temperature disorder. This suggests to
look at the following operator,

sL(x)=
1
|L|

C
y ¥ L

[ny2−ny+x, 2]2. (1.2)
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The corresponding correlation function is given by the expectation of sL(x)
in the equilibrium state. We consider here the canonical ensemble where
densities of light and heavy particles are fixed to r1 and r2, respectively.
High temperature states are translation invariant and exponentially clus-
tering, and the correlation function converges to 2r2(1−r2) as xQ..
Notice that 0 < 2r2(1−r2) [

1
2 . We identify here a domain of parameters

where the expectation of sL(x) is zero in the ground state (segregation). At
half-filling perturbation methods (2, 3, 18) show that it is close to 1 when |x| is
odd (chessboard order).

Theorem 1. Suppose that r1+r2 ] 1. There exist U0 <. and t0 > 0
(that depend on r1 and r2 only) such that for U > U0 and t < t0 we have

(UL, sL(x) UL)=O(|L|−
1
d).

Here UL is any ground state in the subspace where light and heavy particles
have densities r1 and r2, respectively.

This theorem extends the result of refs. 6 and 7 for the Falicov–
Kimball model. Its proof proceeds by obtaining estimates for the ground
state energy. The ground state is a linear combination of states with a fixed
configuration of heavy particles. The weight of configurations with large
‘‘boundary’’ (pairs of nearest-neighbor sites where one is occupied and one
is empty) is small. Indeed, most of light particles are delocalized in the
remaining sites and their kinetic energy would otherwise be great, as it is
roughly proportional to the boundary (see ref. 6 and Section 2). The pres-
sure exerted by the light particles packs the heavy particles together. The
kinetic energy of heavy particles is therefore irrelevant, and simple esti-
mates suffice in bounding their contribution. These ideas are detailed in
Section 4.

Section 2 reviews the results for the sum of lowest eigenvalues of the
discrete Laplacian obtained in ref. 6, with some improvements in the
regime of low densities. We discuss the segregated states of the asymmetric
Hubbard model for all 0 [ t [ 1 in Section 3. For given densities of light
and heavy particles, there is one free parameter to characterize segregation:
the proportion of volume occupied by each type of particles. The restricted
phase diagram of segregate states displays a transition between a phase
where the local density of heavy particles is maximum (that is, 1), and a
phase where they have a local density that is strictly less than 1. Section 4 is
devoted to the proof of Theorem 1.
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2. SUM OF LOWEST EIGENVALUES OF THE DISCRETE LAPLACIAN

The sum of the N lowest eigenvalues of the discrete Laplacian in a
finite domain L … Zd gives the ground state energy of N spinless, non-
interacting electrons hopping in L. This quantity is relevant to some
problems of condensed matter physics. Thermodynamics suggests that it is
equal to a bulk term that is proportional to the volume |L| of the domain,
plus a positive boundary correction that is proportional to the boundary
of L. Li and Yau proved in 1983 that the sum of lowest eigenvalues of the
continuum Laplacian is indeed bounded below by the bulk term. (20) See
ref. 23, Theorem 12.3, for a clear exposition. The proof readily adapts to
the case of the lattice.

The problem on the lattice turns out to be simpler and allows for
bounds on the boundary correction, for given ‘‘electronic density’’
r=N/|L|. Precisely, the boundary correction can be bounded above and
below by positive numbers times the ‘‘surface’’ of the boundary. This was
done in ref. 6; this section contains some improvements in the limit of low
densities.

Corresponding statements in the continuum case have not been
obtained yet. The best statements seem to be the upper bound of Lieb and
Loss, Theorem 12.11 in ref. 23, and the lower bound of Melas, (24) who
obtained a positive correction of the order of the size of the domain to the
power d−2. However, these bounds are not proportional to the boundary
when the density is fixed.

For a finite domain L … Zd the discrete Laplacian hL is defined by

hLj(x)=− C
y ¥ L

|y−x|=1

j(y)+2 dj(x), (2.1)

for all x ¥ L. Here j ¥ a2(L) is a normalized, complex function on L. If j is
an eigenstate with eigenvalue e, so is (−1) |x| j with eigenvalue 4d−e (here
|x| denotes the a1 norm of x ¥ Zd ). One also checks that hL \ 0, and there-
fore its spectrum is contained in (0, 4d) and is symmetric around 2d. The
bulk term involves the ground state energy per site e(r) of free fermions
and it is given by

e(r)=
1

(2p)d
F
ek < eF(r)

ek dk. (2.2)
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Here k ¥ [−p, p]d and ek=2d−2;d
i=1 cos ki. Notice that |k|

2− 1
12 |k|

4 [

ek [ |k|2. The ‘‘Fermi level’’ eF(r) is defined by the equation

r=
1

(2p)d
F
ek < eF(r)

dk. (2.3)

Let B(L) denote the number of bonds connecting L with its com-
plement,

B(L)=|{(x, y): x ¥ L, y ¥ Lc, and |x−y|=1}|. (2.4)

If SL, N is the sum of the N lowest eigenvalues of hL, and r=N/|L| is the
density, we are looking for bounds of the form

e(r) |L|+a(r) B(L) [ SL, N [ e(r) |L|+b(r) B(L) (2.5)

with positive a(r), b(r), that are independent of the domain. It was proved
in ref. 6 that

b(r)=r−
1
2d
e(r) (2.6)

gives the optimal upper bound, that is saturated by domains consisting of
isolated sites. (The size of the boundary was defined differently in ref. 6 but
minor changes in the proof yield the upper bound stated here.)

We define a(r) to be the minimal ‘‘surface energy’’ among all possible
domains. Namely, for r ¥ [0, 1] 5Q,

a(r)=inf
L

SL, N−e(r) |L|
B(L)

. (2.7)

The infimum is taken over all finite domains L such that r |L|=N is
an integer. The symmetry of the spectrum of hL around 2d implies that
a(1−r)=a(r). We give below lower and upper bounds, stating in particu-
lar that a(r) > 0 for 0 < r < 1. Many questions remain open, such as the
existence of a minimizer in (2.7); continuity of a(r); monotonicity and
convexity of a(r) for 0 [ r [ 1

2 . It is even not clear whether the infimum
(2.7) can be taken on connected sets. In order to state the bounds for a(r),
let us introduce

t(r)=reF(r)−e(r). (2.8)
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Theorem 2. For all 0 < r [ 1
2 , we have

0 < a(r) [
1
2d
t(r).

For small densities, we have

a(r) >
2

(3d)3
t(r)(1−O(r2/d)).

We prove here that a(r) is bounded below by 2

(3d)3
t(r) at low densities

and that it is smaller than 1
2d t(r); notice that t(r) ’ r

1+2
d as rQ 0. Efforts

are made here to get the best possible factor. On the other hand, pushing
the range of densities instead, we could get a positive lower bound for
0 < r < (4p)−d/2 C( d2+1)

−1. Remaining densities are much more difficult to
treat and we refer to ref. 6 (and to ref. 9 for subsequent improvements and
simplifications).

Proof of the Lower Bound for a(r) for Low Densities. We follow
ref. 6, with some improvements. Let jj be the eigenvector of hL corre-
sponding to the jth eigenvalue ej, and ĵj be its Fourier transform

ĵj(k)=C
x ¥ L

jj(x) e ikx, k ¥ [−p, p]d. (2.9)

Then

SL, N=
1

(2p)d
F
[−p, p]d

r(k) ek dk, (2.10)

where

r(k)=C
N

j=1
|ĵj(k)|2=|L|− C

|L|

j=N+1
|ĵj(k)|2. (2.11)

We also observe that 1
(2p)d

> r(k) dk=N. One obtains a lower bound for
SL, N by taking the infimum of the right side of (1.10) over all positive
functions r smaller than |L| and with the proper normalization. This gives
the bulk term. (6, 20, 23) In order to extract the effect of the boundary, one
strengthens the upper bound for r(k), aiming at |L|− const ·B(L). We start
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as in ref. 6 and write down a Schrödinger equation that is valid for all
x ¥ Zd:

−C
e
jj(x+e)+2 djj(x)+qLc(x) C

e: x+e ¥ L
jj(x+e)=ejjj(x). (2.12)

It is understood that jj(x)=0 if x ¨ L; the sums are over unit vectors e.
The term with the characteristic function qLc involves only sites that are
close to the boundary. The Fourier transform of this equation can be
written as

ekĵj(k)+(bk, jj)=ejĵj(k), (2.13)

where bk is the following ‘‘boundary vector’’

bk(x)=q“L(x) e−ikx C
e: x+e ¨ L

e−ike. (2.14)

We introduced the set “L of sites inside L touching its complement

“L={x ¥ L : dist(x, Lc)=1}. (2.15)

We observe that B(L) [ ||bk ||2 [ 2 dB(L), the lower bound holding at least
when |k|. [ p

4 . The last term of (1.11) can then be written using (2.13) as

C
|L|

j=N+1
|ĵj(k)|2= C

|L|

j=N+1

|(bk, jj)|2

(ej− ek)2
\
(; |L|

j=N+1 |ej− ek | |(bk, jj)|2)4

(; |L|
j=N+1 |ej− ek |

2 |(bk, jj)|2)3
. (2.16)

The lower bound follows from Hölder’s inequality. One easily checks that

C
|L|

j=N+1
|ej− ek | |(bk, jj)|2 \ (bk, hLbk)−(ek+eN) ||bk ||2,

C
|L|

j=N+1
|ej− ek |2 |(bk, jj)|2 [ (bk, h

2
Lbk)+e

2
k ||bk ||

2.

(2.17)

From now on we suppose ek and eN to be small so that they add to less
than 1. Notice that (bk, h

2
Lbk)=||hLbk ||2. Because each site of “L has a

neighbor outside L and bk is zero there, we have

(bk, hLbk)= C
{x, y}: |x−y|=1

|bk(x)−bk(y)|2 \ C
x ¥ “L

|bk(x)|2=||bk ||2. (2.18)
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Then (2.16), (2.17), and (2.18), imply that

C
|L|

j=N+1
|ĵj(k)|2 \

(bk, hLbk)4 (1− ek−eN)4

(||hLbk ||2+e
2
k ||bk ||

2)3
. (2.19)

We estimate the denominator.

||hLbk ||2=C
x ¥ L

: C
y ¥ Z

d

|y−x|=1

(bk(x)−bk(y)) :
2

[ 2d C
x ¥ L

C
y ¥ Z

d

|y−x|=1

|bk(x)−bk(y)|2

=2d C
x, y ¥ Z

d

|x−y|=1

|bk(x)−bk(y)|2−2d C
x ¥ L

c, y ¥ L
|x−y|=1

|bk(y)|2

[ 4d(bk, hLbk)−2d ||bk ||2. (2.20)

Inserting this bound in (2.19), we obtain

C
|L|

j=N+1
|ĵj(k)|2 \ (1− ek−eN)4 ||bk ||2

(bk, hLbk)/||bk ||2

[4d−(2d− e2k)
||bk||

2

(bk, hLbk)
]3
. (2.21)

Simple analysis shows that the minimum of the fraction under the condi-
tion (bk, hLbk) \ ||bk ||2 is equal to

2

(3d)3
(1− e

2
k

2d). Furthermore, bk(x) is close to
b0(x) for small k,

|bk(x)|2=: C
e: x+e ¨ L

(cos ke− i sin ke):
2

\ : C
e: x+e ¨ L

cos ke:
2

\ :(1− 1
2 ek) C

e: x+e ¨ L
1:

2

\ (1− ek) b
2
0(x). (2.22)

Clearly, (1− ek−eN)4 (1−
e
2
k

2d)(1− ek) \ 1−6ek−4eN. Using (2.21) and
(2.22) and since ||b0 ||2 \ B(L), we get

C
|L|

j=N+1
|ĵj(k)|2 \

2
(3d)3

(1−6ek−4eN) B(L). (2.23)

We can insert this estimate into (2.11) so as to get

r(k) [ |L|−
2

(3d)3
(1−6ek−4eN) B(L). (2.24)
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Suppose we have a bound r(k) [ (1−a) |L| for some a that is inde-
pendent of k. Lieb and Loss ‘‘bathtub principle’’ (Theorem 1.14 in ref. 23)
yields

SL, N \ (1−a) |L|
1

(2p)d
F
ek < eF(

r

1−a)
ek dk

=(1−a) e 1 r
1−a
2 |L|. (2.25)

And because (1−a) e( r

1−a) is convex as a function of a, and that its deri-
vative is equal to t( r

1−a), we obtain

SL, N \ e(r) |L|+at(r) |L|. (2.26)

Let 0 < g < 1. We define

a=
2

(3d)3
(1−g)

B(L)
|L|

. (2.27)

Condition (2.24) implies that r(k) [ (1−a) |L| for all k such that ek <
eF(

r

1−a), provided the following condition holds true,

g \ 6eF 1
r

1−a
2+4eN. (2.28)

Given g, we restrict to densities small enough so that

6eF 1
r

1− 4
27d2

2 < 1
2
g. (2.29)

(Notice that 4
27d2

is an upper bound for a.) Then for all domains L and all
numbers of electrons N such that 4eN <

1
2 g, the condition (2.28) is satisfied

and we obtain

SL, N \ e(r) |L|+
2

(3d)3
(1−g) t(r) B(L). (2.30)

Consider now the case where (2.29) is fulfilled but 4eN >
1
2 g. We define

NŒ such that 4eNŒ [
1
2 g and 4eNŒ+1 >

1
2 g. Then

SL, N=SL, NŒ+ C
N

j=NŒ+1
ej

\ e(rŒ) |L|+
2

(3d)3
(1−g) t(rŒ) B(L)+

1
8
g(r−rŒ) |L|. (2.31)
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The right side is larger than e(r) |L|+ 2

(3d)3
(1−g) t(r) B(L) provided that

e(rŒ)+
2

(3d)3
(1−g) t(rŒ)

B(L)
|L|

+
1
8
g(r−rŒ)

\ e(r)+
2

(3d)3
(1−g) t(r)

B(L)
|L|

. (2.32)

It is enough to check that the function 1
8 gr−e(r)−

4
27d2
t(r) is increasing.

The derivative of t(r) is equal to r ddr eF(r). It is possible to verify that

d
dr
eF(r) <

8p
d
C 1d

2
+12

2/d

r−1+2
d (2.33)

(the bound is optimal in the limit rQ 0). The function above is therefore
increasing for small densities. The number g can be chosen arbitrarily small
by taking the density small enough. Precisely, the condition is that
const ·r2/d [ g. This means that given r, we can take g=O(r2/d). L

Proof of the Upper Bound for a(r). Let L be a (rather large)
domain, and LŒ be a set of isolated sites outside of L. Let r be such that
|LŒ|=r |L|. The spectrum of hL 2 LŒ is given by the union of the spectrum of
hL and of {2d}, the latter eigenvalue being at least |LŒ| times degenerated.
We have SL, N \ SL 2 LŒ, N (with equality if N

|L| [
1
2) and B(LŒ)=B(L)+

2 dr |L|. Using the upper bound for SL, N and the lower bound for SL 2 LŒ, N,
we obtain (with r= N

|L| (1+r))

e((1+r) r) |L|+b((1+r) r) B(L) \ (1+r) e(r) |L|+a(r)[B(L)+2 dr |L|].
(2.34)

Reorganizing,

a(r) 5B(L)
|L|

+2 dr6 [ e((1+r) r)−(1+r) e(r)+b((1+r) r) B(L)
|L|

. (2.35)

This inequality holds for any domain L such that (1+r) r |L| is an integer.
Ratios boundary/volume can be made arbitrarily small and therefore the
corresponding terms can be omitted. We obtain

a(r) [
e((1+r) r)−(1+r) e(r)

2 dr
. (2.36)

Taking the limit rQ 0 yields the result. L
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3. A DISCUSSION OF SEGREGATION

Particles of different species segregate away from half-filling, at least
for large U and small t. The domain splits into two subdomains, L=
L1 2 L2, with L1 containing light particles only, and L2 containing heavy
particles only. This is true up to boundary terms that do not contribute to
the bulk energy. We neglect boundary terms in this section.

There is one free parameter that controls segregation, namely the ratio
of the volumes occupied by each phase. For t=0 the ground state is
realized with |L2 |=N2; it was argued in ref. 6 that light particles exert a
‘‘pressure’’ that packs heavy particles together; this pressure overcomes the
tendency of heavy particles to delocalize so as to decrease their own kinetic
energy. If t is large enough however, heavy particles will extend their
domain. We study this mechanism in this section, assuming that particles
always segregate. From the point of view of rigorous results, we obtain
upper bounds for the ground state energy of the system.

We consider a finite domain L … Zd partitioned in two subdomains L1

and L2. We fix the number of particles N1 and N2 of light and heavy
particles respectively, and we denote the corresponding densities by
r1=N1/|L| and r2=N2/|L|. Let n=|L2 |/|L|; we have r2 [ n [ 1−r1.
Notice that the densities inside each subdomain are N1

|L1|
= r1

1− n and
N2
|L2|
=r2

n .
Neglecting the contribution of boundaries, the energy per site of this
segregated state is

e(r1, r2; n)=(1− n) e 1 r1
1− n
2+tne 1r2

n
2 . (3.1)

Fig. 1. A segregated state involves a partition of the domain into subdomains L1 and L2 for
light and heavy particles respectivey. The boundary between subdomains is supposed to be
small so that its contribution to the bulk energy is negligible. With n such that |L2 |=n |L|,
densities inside each subdomain are r1

1− n and
r2
n .
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For given densities r1 and r2 we are looking for the minimum of
e(r1, r2; n) with respect to n. One easily computes

d
dn
e(r1, r2; n)=t 1

r1

1− n
2−tt 1r2

n
2 . (3.2)

It is worth noticing that e(r1, r2; n) is convex in n, as its second derivative
is positive (t is increasing). At n=r2, we have

d
dn
e(r1, r2; n)|n=r2=t 1

r1

1−r2
2−2 dt. (3.3)

This expression can be positive or negative, the critical parameter being
tc=

1
2d t(

r1
1−r2

). On the other hand, the derivative of e(r1, r2; n) at n=1−r1
is always positive (if t [ 1). Therefore the segregated state that has
minimum energy (among segregated states) is given as follows:

• If t [ tc=
1
2d t(

r1
1−r2

), the minimizer is n=r2, and the phase of heavy
particles has density 1.

• If tc < t < 1, the minimizer n is between r2 and
r2

r1+r2
, and the phase

of heavy particles has a density strictly larger than r1+r2 and strictly
smaller than 1.

• If t=1 the minimizer is n= r2
r1+r2

and the phase of heavy particles
has density r1+r2.

This is illustrated in Fig. 2, that displays a restricted phase diagram
where only segregated states are considered. This description is relevant
only if a segregated state minimizes the energy. This is proved in the case of
small t.

A major open question in this model is whether segregation really
occurs for t > tc.

4. THE GROUND STATE OF THE ASYMMETRIC HUBBARD MODEL

Let F(L) be the Fock space for spinless fermions in L. For LŒ … L, let
FLŒ ¥F(L) represents the state with |LŒ| particles occupying all sites of LŒ.
{FLŒ}LŒ … L is a basis for F(L). The state space for the asymmetric Hubbard
model is F(L) éF(L). Any function UL ¥F(L) éF(L) can be written
as

UL= C
L1, L2 … L

aL1, L2FL1 é FL2 , (4.1)
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Fig. 2. Restricted phase diagram for segregated states. The phase of heavy particles has
density 1 in the dark gray domain; its density is strictly less than 1 in the light gray domain.
Segregation is proved in the black domain when U=. (and in a smaller domain when U is
large).

with ;L1, L2 |aL1, L2 |
2=1. Let aL2=(;L1

|aL1, L2 |
2)1/2 and Y(L2) ¥F(L) be

the normalized function such that

aL2Y(L2)= C
L1 … L

aL1, L2FL1 . (4.2)

Then ;L2
a2
L2
=1, and the function UL can be written as

UL= C
L2 … L

aL2Y(L2) é FL2 . (4.3)

We derive in Proposition 3 below an inequality for the coefficients
aL2 that will allow us to establish segregation in the ground state of the
strongly asymmetric Hubbard model.

Let F(L; N) denote the Hilbert subspace of F(L) corresponding
to N particles. That is, it is spanned by {FLŒ} with |LŒ|=N. All spaces
F(L; N1) éF(L; N2) are invariant under the action of HL since the latter
conserves both particle numbers. As before, we denote densities by r1=

N1
|L|

and r2=
N2
|L| . The term c(U) that appears below was defined in ref. 6; it

behaves like 8d2

U for large U.
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Proposition 3. Let UL be a ground state of HL in F(L; N1) é
F(L; N2). If a(

r1
1−r2

) > c(U)+t, we have

C
L2 … L

a2
L2
B(L2) [

4d b( r1
1−r2

) r1− 1
d2

a( r1
1−r2

)− c(U)−t
|L|1−

1
d.

Proof. We write the energy of a state using coefficients aL2 defined
above, and then use results obtained for the Falicov–Kimball model. Let TL
be the kinetic energy operator for particles in L; it acts on F(L), and can
be written as

TL=− C
x, y ¥ L
|x−y|=1

c†xcy (4.4)

where c†x and cx are creation and annihilation operators of a fermion at x.
Notice that the kinetic terms of (0.1) are given by TL é 1+t1 é TL.
Furthermore, for LŒ … L, let VL, LŒ be the operator

VL, LŒ=U C
x ¥ LŒ

c†xcx. (4.5)

It represents an external potential that is equal to U on sites of LŒ and 0
otherwise. The energy of a state UL given by (4.3) can be written as

(UL, HLUL)=t C
L2, LŒ2

aL2aLŒ2 (Y(L2), Y(L
−

2)) (FL2 , TLFLŒ2 )

+C
L2

a2
L2
(Y(L2), (TL+VL, L2 ) Y(L2)). (4.6)

(The sums are over sets satisfying |L2 |=|L −2 |=N2.) Notice that the first
term of the right side is bounded by

t CŒ
L2, LŒ2

aL2aLŒ2 [ t 1 CŒ
L2, LŒ2

a2
L2
21/2 1 CŒ

L2, LŒ2

a2
LŒ2
21/2=t C

L2

a2
L2
B(L2), (4.7)

where the symbol ;Œ means a sum over pairs of sets L2, L
−

2 … L that differ
only by one site moved to a neigbor (that is, the symmetric difference
L2 g L

−

2 must be a pair of nearest-neigbors).
The strategy of the proof is to consider the expression (4.6) for the

energy of the ground state UL. We get an upper bound by using a trial
function that is independent of the coefficients {aL2}. We then estimate the
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second term of (4.6) from below, using the inequality (2.5) for the segrega-
tion energy. The corresponding expression involves the coefficients {aL2}
and we obtain the inequality stated in Proposition 3.

Let L2 … L be such that |L2 |=N2, and let us consider Y(L2) é FL2
where Y(L2) is a normalized function ofF(L, N1) with support on L

c
2. We

have

(Y(L2) é FL2 , HL Y(L2) é FL2 )=(Y(L2), TLc2Y(L2))

[ |Lc2 | e 1
r1

1−r2
2+b 1 r1

1−r2
2 B(L2). (4.8)

We used the upper bound in (2.5). We take for L2 a square if possible, or a
domain with very close shape. Its boundary is less than 4dN1− 1

d
2 . The

boundary term in (4.8) is then smaller than 4d b( r1
1−r2

) r1− 1
d

2 |L|1−
1
d. We use

now the lower bound in (2.5). As stated in this paper it holds only for
U=.. However, it was extended in ref. 6 to finite U; namely, it was shown
there that

(Y(L2), (TL+VL) Y(L2)) \ e 1
r1

1−r2
2 |Lc2 |+5a 1

r1

1−r2
2− c(U)6 B(L2),

(4.9)

where a( · ) is the minimal surface energy defined in (2.7). Combining this
with (4.6) and (4.7), we have for any ground state function UL,

(UL, HLUL) \ −t C
L2

a2
L2
B(L2)

+C
L2

a2
L2
5e 1 r1

1−r2
2 |Lc2 |+1a 1

r1

1−r2
2− c(U)2 B(L2)6 .

(4.10)

We now compare this expression with the upper bound (4.8) and we obtain

C
L2

a2
L2
B(L2) 5a 1

r1

1−r2
2− c(U)−t6 [ 4 db 1 r1

1−r2
2 r1− 1

d
2 |L|1−

1
d. L
(4.11)

Proof of Theorem 1. Using the decomposition (4.3) for the ground
state UL, we have

(UL, sL(x) UL)=
2
|L|

C
y ¥ L

C
L2 … L

a2
L2
qL2 (y) qLc2 (x+y). (4.12)
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It is clear that

C
y ¥ L

qL2 (y) qLc2 (x+y) [ B(L2) |x|., (4.13)

and therefore

(UL, sL(x) UL) [
2 |x|.
|L|

C
L2 … L

a2
L2
B(L2). (4.14)

Hole-particle symmetries in this model are similar to those in the Falicov–
Kimball model, see ref. 17, and allow to restrict to the case r1+r2 < 1. We
have a( r1

1−r2
) > c(U)+t if U is large and t is small, so that Proposition 3 is

valid. We use it to control the sum above and we get Theorem 1. L
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